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e Review the linearity assumption

e Learn how to model non-linear relationships within the
constraints of the linear model
— polynomial regression

— local regression
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Workshop Aims: Recap

e Assumptions in the linear regression model (Y = a+ Sx X% +e):

normality: residuals are normally distributed
homoskedasticity: the variance of the residuals is constant
independence: residuals are independent of each other

no multicollinearity

perfectly measured variables

no missing data (other than missing at random)

no unobserved confounders: we control for all common causes of
Xj and Y

no reverse causality: Y does not cause X;

linearity: the effect of X1 on Y is the same across the range of
X1
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each explanatory variable is multiplied by a coefficient and
summed up

Y; = Bo + B1X1i + B2Xoi + BrXwi + €5

— and the average magnitude of e; is assumed to be the same for
all values of X;
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Recap — each explanatory variable is multiplied by a coefficient and

summed up
Y = Bo + B1X1i + B2 Xai + B Xk + €

— and the average magnitude of e; is assumed to be the same for
all values of X;

e If that is not the case, then the model residuals won’t be...

— exogenous, Cov(X;,e;) =0

— independent, Cov(e;, ej) =0,

— with constant variance, Var(e;) = Var(e)

— or normally distributed, N ~ (0, Var(e))
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Bl dependent variable
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L] Eieemen — we have used log(Y) for right-skewed data

Recap — and logit(Y) for binary data

— we can accommodate many other non-normal distributions using
‘generalised linear models’

— which will invoke different parametric assumptions for the
residuals

— Poisson, negative binomial, exponential, gamma, etc.
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Lincarity e One way to deal with non-linearity is by transforming the
Bl dependent variable

Regression

L] Eieemen — we have used log(Y) for right-skewed data

Recap — and logit(Y) for binary data

— we can accommodate many other non-normal distributions using
‘generalised linear models’

— which will invoke different parametric assumptions for the
residuals

— Poisson, negative binomial, exponential, gamma, etc.

e These models however will modify the relationship between Y
and all the Xj

— e.g. if using logit(Y) all By are interpreted as changes in the
log-odds of Y for a one change in X}

— but what if the non-linear relationship only affects one (or a
subset) of X7

e Then we can use polynomial regression
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— we can add a new term X% in the model to explore a quadratic
relationship between X; and Y (we allow a point of inflection)
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Polynomial to a given power

Regression

ol Remmeeion — let’s say we suspect X1 to have a non-linear relationship with Y

Recap — we can add a new term X% in the model to explore a quadratic
relationship between X; and Y (we allow a point of inflection)
linear model

Y =80+ 51 X1+ PeXo+ ...+ BpXp +e

linear model with a quadratic effect for X,
Y =80+ (B1,1X1 + B1,2X3) + BoXo + ... + Bp Xy +e
the effect of X1 on Y will now be represented by the term within

0
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Linearity e We can extend the linear model by raising explanatory variables
Polynomial to a given power
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— let’s say we suspect X1 to have a non-linear relationship with Y
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Recap — we can add a new term X% in the model to explore a quadratic
relationship between X; and Y (we allow a point of inflection)

linear model
Y =80+ 51 X1+ PeXo+ ...+ BpXp +e
linear model with a quadratic effect for X1
Y =B+ (B1,1X1 + B1,2XF) + B2Xo + ... + Br Xy + e
the effect of X1 on Y will now be represented by the term within

0

— we can also explore cubic a relationship (two points of inflection)

linear model with a cubic effect for X
Y = B0+ (B1,1X1 + B12XF + B1,3X7) + BoXo + ... + B Xy +e

— we can add more points of inflection but such relationships are
rare and we will inevitably incur in problems of multicollinearity
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e A simple way to provide a non-linear fit to the relationship
Recap between Y and one or more X

— if we use it in the context of a standard linear model we can keep
using OLS

— we can also use polynomial terms in generalised linear models

e It is still subject to a number of limitations
— can induce multicollinearity

— provides additional flexibility but it is still parametric (follows a
given function)

— we need to be extra careful when it comes to extrapolations
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10-14

Locally Weighted Regression (LOESS)

e LOESS is ‘local’

breaks down the sample into different ‘neighborhoods’ around a
specific location, Xo

the neighborhood is defined as the span (aka bandwidth), i.e.
the fraction of the total points used to form neighborhoods

e.g. for a span of 0.5 the closest half of the total number of cases
is used

the same model is estimated in each neighbourhood using
different cases

obtaining different 3 across the range of X

e LOESS is ‘weighted’

in each of the models estimated cases closer to X are given
more weight
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— we seek to minimise the sum squared error terms,
S(Y; — fo — B1X:)?

— solving the system of equations we get the estimators for the
constant and the slope as

Local Regression

Recap

S(X - X)(Y; —Y)
(X, — X)?
ZXi
N

Bo=Y —Xp1; and By =

_ YY; _
where Y = sand X =
N

For weighted least squares we seek to minimise
— IW;(Y; — Bo — B1X;)?; which leads to
o — Tor — Ko s and fy — ZWalXs = Xw) (Vi — Yiw)
— Bo=Yw — Xwpi; and 1 = S
Po=Yw = Xwfi; and /i SWi(X; — X2
EWLY; - IWiX;

;and X
Wi EWi

where Y =

11-14
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LOESS: Final Considerations

Workshop Aims e Parametric models (such as polynomial regression) are normally
guided by theory

Linearity

Polynomial — nonparametric models are data-driven

Regression

Local Regression — good exploratory tools

Recap — but perhaps they should not be used to test hypotheses
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Workshop Aims e Parametric models (such as polynomial regression) are normally

Linearity

Polynomial —
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Recap

guided by theory

nonparametric models are data-driven
good exploratory tools

but perhaps they should not be used to test hypotheses

e It is recommended not to use narrow bandwiths

if too wide of a bandwith we might miss of the non-linearity
the narrower the bandwidth the more noise will be depicted
the narrower the bandwidth the higher the SEs

there is a trade-off between precision and accuracy

e Its applicability is limited
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both the outcome and explanatory variable must be continuous

can be used for more than one explanatory variable, but it
cannot control for other variables

to explore non-linear effects non-parametrically while controlling
for other variables use generalised additive models (GAM)

to explore changes in the effect of discrete explanatory variables
across the range of Y we can use quantile regression
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Recap

Workshop Aims
Linearity
it e We can include non-linear effects in linear models easily using
Regression . .

polynomial regressions
Local Regression
Recap

e If we do not want to impose pre-defined (parametric) functions
we can also use local regression

— we have learnt how LOESS works, probably the most common
form of non-parametric regression to deal with non-linear effects

— similar methods could be explored in more complex settings
(GAM and quantile regression)
e Recommended readings

— on polynomial regression you can read Hanck et al. (2019)
Chapter 8 ‘Nonlinear Regression Functions’

— on non-parametric models you can read Mahmoud (2019)
‘Parametric vs Semi and NonParametric Regression Models’

— on local regression Irizarry ‘Chapter 3. Local Regression’
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https://www.econometrics-with-r.org/index.html
https://arxiv.org/pdf/1906.10221.pdf
http://rafalab.github.io/pages/754/section-03.pdf
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