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Workshop Aims

• Review the linearity assumption

• Learn how to model non-linear relationships within the
constraints of the linear model

− polynomial regression

− local regression
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Workshop Aims: Recap

• Assumptions in the linear regression model (Y = α+βkXk + e):

− normality: residuals are normally distributed

− homoskedasticity: the variance of the residuals is constant

− independence: residuals are independent of each other

− no multicollinearity

− perfectly measured variables

− no missing data (other than missing at random)

− no unobserved confounders: we control for all common causes of
X1 and Y

− no reverse causality: Y does not cause X1

− linearity: the effect of X1 on Y is the same across the range of
X1
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Linearity

• On average, the change in Y is proportional to the change in X

− each explanatory variable is multiplied by a coefficient and
summed up

Yi = β0 + β1X1i + β2X2i + βkXki + ei

− and the average magnitude of ei is assumed to be the same for
all values of Xi

• If that is not the case, then the model residuals won’t be...

− exogenous, Cov(Xi, ei) = 0

− independent, Cov(ei, ej) = 0,

− with constant variance, V ar(ei) = V ar(e)

− or normally distributed, N ∼ (0, V ar(e))
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Linear or Non-Linear?
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Non-Linear Models

• One way to deal with non-linearity is by transforming the
dependent variable

− we have used log(Y) for right-skewed data

− and logit(Y) for binary data

− we can accommodate many other non-normal distributions using
‘generalised linear models’

− which will invoke different parametric assumptions for the
residuals

− Poisson, negative binomial, exponential, gamma, etc.

• These models however will modify the relationship between Y
and all the Xk

− e.g. if using logit(Y) all βk are interpreted as changes in the
log-odds of Y for a one change in Xk

− but what if the non-linear relationship only affects one (or a
subset) of Xk?

• Then we can use polynomial regression
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Polynomial Regression

• We can extend the linear model by raising explanatory variables
to a given power

− let’s say we suspect X1 to have a non-linear relationship with Y

− we can add a new term X2
1 in the model to explore a quadratic

relationship between X1 and Y (we allow a point of inflection)

linear model︷ ︸︸ ︷
Y = β0 + β1X1 + β2X2 + ...+ βkXk + e

linear model with a quadratic effect for X1︷ ︸︸ ︷
Y = β0 + (β1,1X1 + β1,2X

2
1 ) + β2X2 + ...+ βkXk + e

the effect of X1 on Y will now be represented by the term within
()

− we can also explore cubic a relationship (two points of inflection)

linear model with a cubic effect for X1︷ ︸︸ ︷
Y = β0 + (β1,1X1 + β1,2X

2
1 + β1,3X

3
1 ) + β2X2 + ...+ βkXk + e

− we can add more points of inflection but such relationships are
rare and we will inevitably incur in problems of multicollinearity
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Polynomial Regression: Visually
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Polynomial Regression

• A simple way to provide a non-linear fit to the relationship
between Y and one or more X

− if we use it in the context of a standard linear model we can keep
using OLS

− we can also use polynomial terms in generalised linear models

• It is still subject to a number of limitations

− can induce multicollinearity

− provides additional flexibility but it is still parametric (follows a
given function)

− we need to be extra careful when it comes to extrapolations
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Locally Weighted Regression (LOESS)

• LOESS is ‘local’

− breaks down the sample into different ‘neighborhoods’ around a
specific location, X0

− the neighborhood is defined as the span (aka bandwidth), i.e.
the fraction of the total points used to form neighborhoods

− e.g. for a span of 0.5 the closest half of the total number of cases
is used

− the same model is estimated in each neighbourhood using
different cases

− obtaining different β across the range of X

• LOESS is ‘weighted’

− in each of the models estimated cases closer to X0 are given
more weight
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Weighted Regression

• For the case of simple linear regression based on OLS

− we seek to minimise the sum squared error terms,

Σ(Yi − β0 − β1Xi)
2

− solving the system of equations we get the estimators for the
constant and the slope as

β̂0 = Ȳ − X̄β̂1; and β̂1 =
Σ(Xi − X̄)(Yi − Ȳ )

Σ(Xi − X̄)2

where Ȳ =
ΣYi

N
; and X̄ =

ΣXi

N

• For weighted least squares we seek to minimise

− ΣWi(Yi − β0 − β1Xi)
2; which leads to

− β̂0 = ȲW − X̄W β̂1; and β̂1 =
ΣWi(Xi − X̄W )(Yi − ȲW )

ΣWi(Xi − X̄W )2

where Ȳ =
ΣWiYi

ΣWi
; and X̄ =

ΣWiXi

ΣWi
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β̂0 = Ȳ − X̄β̂1; and β̂1 =
Σ(Xi − X̄)(Yi − Ȳ )

Σ(Xi − X̄)2

where Ȳ =
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LOESS: Visually

Source: A. Charpentier
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LOESS: Final Considerations

• Parametric models (such as polynomial regression) are normally
guided by theory

− nonparametric models are data-driven

− good exploratory tools

− but perhaps they should not be used to test hypotheses

• It is recommended not to use narrow bandwiths

− if too wide of a bandwith we might miss of the non-linearity

− the narrower the bandwidth the more noise will be depicted

− the narrower the bandwidth the higher the SEs

− there is a trade-off between precision and accuracy

• Its applicability is limited

− both the outcome and explanatory variable must be continuous

− can be used for more than one explanatory variable, but it
cannot control for other variables

− to explore non-linear effects non-parametrically while controlling
for other variables use generalised additive models (GAM)

− to explore changes in the effect of discrete explanatory variables
across the range of Y we can use quantile regression
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• It is recommended not to use narrow bandwiths

− if too wide of a bandwith we might miss of the non-linearity

− the narrower the bandwidth the more noise will be depicted

− the narrower the bandwidth the higher the SEs

− there is a trade-off between precision and accuracy

• Its applicability is limited

− both the outcome and explanatory variable must be continuous

− can be used for more than one explanatory variable, but it
cannot control for other variables

− to explore non-linear effects non-parametrically while controlling
for other variables use generalised additive models (GAM)

− to explore changes in the effect of discrete explanatory variables
across the range of Y we can use quantile regression
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Recap

• We can include non-linear effects in linear models easily using
polynomial regressions

• If we do not want to impose pre-defined (parametric) functions
we can also use local regression

− we have learnt how LOESS works, probably the most common
form of non-parametric regression to deal with non-linear effects

− similar methods could be explored in more complex settings
(GAM and quantile regression)

• Recommended readings

− on polynomial regression you can read Hanck et al. (2019)

Chapter 8 ‘Nonlinear Regression Functions’

− on non-parametric models you can read Mahmoud (2019)

‘Parametric vs Semi and NonParametric Regression Models’

− on local regression Irizarry ‘Chapter 3. Local Regression’

https://www.econometrics-with-r.org/index.html
https://arxiv.org/pdf/1906.10221.pdf
http://rafalab.github.io/pages/754/section-03.pdf
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